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Abstract

This article examines the articulation of learning theory that is emerging from studies

that take principled approaches to the design of instruction for complex forms of

knowledge and skill. The representative studies discussed here are experimental

instructional interventions that focus on: (a) the acquisition of proceduralized skill, (b)

the development of regulatory and monitoring strategies of comprehension, and (c) the

acquisition of organized structures of knowledge. The programs' Implications for

learning theory are examined through an analysis of their theoretical backgrounds and

the principles of learning that they reflect. A primary focus Is identifying points of

overlap and disjunction among them. The authors conclude by suggesting that studies of

Instruction can now address questions about the integration of the competences fostered

separately by such programs and thereby contribute to the development of more

comprehensive theories of the acquisition of knowledgeand skill.
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INTRODUCTION

Instructional psychology has become a vigorous part of the naintr'mir ,

research on human cognition and development. The 1980 Annual Review or'-,'h,,I,_

documented the onset: OIt Is now difficult to draw a clear line between inltru.(iow:iI

psychology and the main body of basic research on complex cognitive processes"

(Resnick 1981, p. 660). As we move toward the 1990s, the shape of the field is becoming

apparent. Its contours are evident In the progress In research on three essential

components of a theory of Instruction (Glaser 1976): (a) description of competent

performances (knowledge and skill) that we want students to acquire; (b) analysis of the

initial state of knowledge and ability with which the learner begins instruction; and (c)

explication of the process of learning, the transition from Initial state to desired state

that can be accomplished In instructional settings. These three components have not

evolved to the same degree and differ in their influence on recent theory and experiment

in Instruction.

Over the past quarter of a century, cognitive research has focused primarily on

the analysis of competence. Studies of memory, language, and problem solving have

examined the nature of performance and the outcomes of learning and development.

The advances in our understanding of competent performance, Including recent studies

of expertise, have had formative Influence on Instructional Investigations. Research on

the Initial state of the learner has received attention more recently In developmental

studies that document a priori constraints, principles, and strategies that govern

children's learning, in investigations of naive theories and misconceptions that influence

the attainment of new knowledge and skill, and in research on processes of Intelligence

and aptitude. In comparison to our knowledge of attained competences and expertise,

the information accumulated on the initial state has only slightly influenced



Glaser & Bassok 2 13 February 1989

Investigations of Instruction, but should begin to assume a more significant role. t  Th,,

least developed component of Instructional theory Is explication of the p()r('- ()I*

learning--a contrast indeed to behavioral psychology, where learning was of najor

concern.

Here we consider a set of seminal programs of instructional research In the

context of this state of our knowledge. We focus on programs that are grounded In

accumulated findings on one of three major aspects of competence: (a) the compiled.

automatized, functional, and proceduralized knowledge characteristic of a well-developed

cognitive skill; (b) the effective use of Internalized self-regulatory control strategies for

fostering comprehension, and (c) the structuring of knowledge for explanation and

problem solving.

For each of the programs, we show how detailed cognitive task analysis has

guided the specification of the objectives of Instruction. We also attempt to explicate

the principles, theory, and/or assumptions about learning and the principles that

underlie the design of instruction. Thus our purpose is to describe the state of the art In

applying the cognitive analysis of performance to the design of Instruction and to

consider current thinking about learning as conceptualized In Investigations of

Instruction.

1For tuller discussions of research on the Initial state of knowledge and ability that the learner brings to
Instruction. see Carey (1985, 1986), Clement (1982). dlSessa (1982). Gelman and Brown (1986). Gelman
and Greeno (1988). Kell (1981, 1984). McCloskey (1983) McCloskey et al (1980), Nlckerson et al (1985)
and Sternberg (1985b, 1986).
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COGNITIVE ANALYSIS OF PERFORMANCE, LEARNING, AND

INSTRUCTION

Learning theory has been a central topic in psychology since its origins yet Its

research base, for the most part, has been analysis of relatively simple performances. and

learning theorists generally have assumed that principles of learning would be

extrapolated eventually to complex forms of learning. This assumption, with respect to

instruction, has been strongest In the behavioral tradition spawned by Skinner. But

Increasingly, beginning In the 1970s (cf. Greeno 1980), questions were raised about the

nature of what Is learned: about the organization of knowledge, the characteristics of

understanding, the knowledge and Information processing requirements for solving

problems, and the nature of the ccmpetences entailed in human performances requiring

specific knowledge and skills resulting from long-term learning and extended experience.

The attempts to answer these questions has brought the study of cognitive performance

Into prominence and temporarily set aside the study of the learning process.

The scientific decision to tackle performance was explicitly acknowledged by

Newell and Simon In the 1972 book, Human Problem Solving.

Turning to the performance-learning-development dimension, our emphasis

on performance again represents a scientific bet. We recognize that what sort

of Information processing system a human becomes depends Intimately on the
way he develops .... Yet, acknowledging this, It still seems to us that we have

too Imperfect a view of the system's final nature to be able to make predictions
from the development process to the characteristics of the structures it

produces.

The study of learning, If carried out with theoretical precision, must start
with a model of a performing organism, so that one can represent, as learning,
the changes In the model ....

The study of learning takes Its cue, then, from the nature of the
performance system. If performance is not well understood, it Is somewhat
premature to study learning .... Both learning and development must then be
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incorporated in Integral ways In the more complete and successful theory of
human information processing that will emerge at a later stage in the
development of our science. (p. 7-8)

Over the subsequent years, significant advances have been made In the analysis of

puzzle-like laboratory problem-solving tasks, and, more recently, more complex

ecologically valid performance has become the object of serious investigation In both

cognitive psychology and artificial intelligence (Greeno & Simon 1988). Task analysis

and knowledge-engineering approaches to the performance of experts have become

prominent activities. In addition, the complex performances Inherent in the school

subject matters of reading, writing, mathematics, science, and social studies are being

productively described (Glaser 1986).

Concepts that seem essential in the description of complex human behavior are

now available. Most Impressive Is the pervasive influence of structures of knowledge as

they interact with sophisticated processes of competent cognition (Feigenbaum 1988, Chli

& Cecl 1987). The way knowledge Is structured influences its accessibility, and

knowledge representation determines understanding and influences problem solving

(Greeno & Simon 1988, Gentner & Stevens 1983. Johnson-Laird 1983). We have learned

also to appreciate the Interplay of general and knowledge-derived processes (Glaser 1984.

1985, Sternberg 1985a), the development of automaticity and the relationships between

unconscious and controlled processing (Shiffrin & Schneider 1977; Schneider 1985;

Lesgold & Perfettl 1981), the efficiency and functional utility characteristic of a well-

developed skill (Anderson 1981, 1987), and the significance of executive and self-

regulatory processes, or metacognition (Brown et al 1983; Bransford et al 1986).

The phenomena captured by these concepts are essential features of the state or

attainment that combine to produce the efficiency, judgment, seeming Intuition, and
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outstanding a*'lities evident in competent performances (cf. Chi et al 1988). We know

that, at various stages of learning, there exist different integrations of knowledge,

different degrees of proceduralized and compiled skill, and differences in rapid access to

memory--all of which shape the representations of tasks and differentiate levels of

cognitive attainment. These differences signal advancing expertise or possible blockages

In the course of learning. On the basis of this knowledge, dimensions are apparent along

which changes in levels of performance occur. These dimensions have become focal

objectives for Instructional intervention.

Although advances in understanding the outcomes of acquired cognitive

performance and, to a lesser degree, of the knowledge and skills brought to learning

provide foundations for Instructional theory, the study of the transition processes that a

theory of learning must account for has been a depressed endeavor until recent years (see

collection edited by Anderson 1981, Rumelhart & Norman 1978). Performance and

memory are Intimately Intertwined in learning, but the difference in emphasis is critical.

The acquisition of new declarative knowledge, development or a cognitive skill,

organization of knowledge into more effective representations, and discovery and

inference of new Information are differentiated forms of learning and their

characterization varies. Some learnng can be characterized as simple accumulation of

new information in memory, whereas in the acquisition of complex knowledge and skill

over months and years, learning appears to Involve qualitative restructuring and

modification of schemata and has a more emergent quality.

No single set of assumptions or principles pervades the work of investigators who

are conducting studies of instructional Intervention, and there are, as yet, no major

debates about general learning mechanisms. Rather, scientists are working toward

principles of learning by bringing ideas from various areas to bear in different wvy.
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Attempts at instruction are based to a limited extent on explicitly stated theory, on

general conceptions of the processes of acquisition for which specific learning mechanisms

are unclear, and on observation of the practice of good teachers or tutors. What is

common to all the approaches to Instruction Is grounding In an explicit cognitive task

analysis; the objectives of instruction are based upon current knowledge of the

characteristics of competent performance on a task. Less consistently, attention is given

to shaping the instruction to accommodate the available relevant research on

characteristics of the learner's initial state.

The Investigators whose work we examine here focus on different forms of

competence in separate domains of knowledge. At present, It is not possible to carry out

an analysis that takes a particular area of performance and the forms of competence

required and compare how different approaches attack a common task. The domains

under Investigation span medical diagnosis, reading comprehension, arithmetic skill,

geometric proofs, and computer programming. These different domains Interact with

the researchers' conceptions of learning. We can describe, however, in a general way.

representative programs in terms of their instructional objectives, assumptions about

learner characteristics, processes of learning, and conditions for Instruction. As we look

toward the development of a theory of instruction, a primary concern is locating points

of overlap and disjunction between prototypical work on the acquisition of

proceduralized skill, the development of regulatory and monitoring strategies for

comprehension and learning, and the acquisition of organized knowledge structures.
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FUNCTIONAL, PROCEDURALIZED

KNOWLEDGE AND SKILL

Studies of differences between experts' and novices' performances suggest that the

course of knowledge acquisition proceeds from a declarative or propositional form to a

compiled, procedural, condition-action form (Anderson 1983, Klahr 1984). Novices can

know a principle, or a rule, or a specialized vocabulary without knowing the conditions

of effective application. In contrast, when experts access knowledge, it Is functional or

bound to conditions of applicability. Moreover, experts' knowledge is closely tied to

their conceptions of the goal structure of a problem space. Experts and novices may be

equally competent at recalling specific items of information, but experts chunk these

items In memory In cause and effect sequences that relate to the goals and subgoals of

problem solution and use this information for further action. The progression from

declarative knowledge to well-tuned functional knowledge is a significant dimensioa of

developing competence.

A related aspect of competent performance Is the speed of knowledge application.

Experts are fast, even though human ability is limited in performing competing

attention-demanding tasks (Shiffrin & Schneider 1977, Schneider 1985). This ability Is

particularly important in Integrating basic and advanced components of skill. Fu'r

example, in reading, as In medical diagnosis or in tennis, where attention must alternate

between basic skills and higher levels of strategy and comprehension, automaticity is

crucial for good performance. Even though the component processes may be well

executed when performed separately, they may not be efficient enough to work together

(Perfettl k Lesgold 1979). In the development of higher levels or proriciency. tlitr,,,

certain component skills need to become compiled and automatized -;() th:v ,'liui,,l,

processing capacity can be devoted to higher levels or cognition a.s nessary. .\
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dimension of acquired competence, then, is a high level of efficiency or automaticity

required for appropriate subprocesses to have minimal interference effects, a level at

which they can be Integrated into total performance.

From Declarative Knowledge to a Procedural Skill

A widely discussed instructional program in which the learning objective is the

acquisition of an efficient and functional cognitive skill has been developed at Carnegie

Mellon University (CMU). A group led by John Anderson has designed computer

tutoring programs for three complex well-defined skills: programming In LISP (Anderson

et al 1984); generating geometry proofs (Anderson et al 1985); and solving algebraic

equations (Lewis et al 1988). These programs are unique In their reliance on an explicit

learning theory (Anderson 1983, 1987) and In their use of the instructional setting as a

stage for systematically testing hypotheses about mechanisms of learning. Thus, besides

Its practical contribution to Instruction, this work presents a model of the fruitful

Interaction between cognitive theory and instructional practice.

THEORETICAL BACKGROUND

The major learning mechanism posited by the ACT* theory is knowledc,

compilation, which accounts for the transition process from declarative knowledge.

initially encoded from text or from teacher's Instruction. Into proceduralized use-oriented

knowledge--converting Oknowing what' Into "knowing how.8 This theory makes the

distinction between declarative and procedural knowledge fundamental. Declarative

knowledge encoded in memory (such as the postulate Side-Angle-Side for provig

triangles congruent) is assumed to be available for the development ()r 4 ,il. TIl i-

knowledge is assiimed to have been deposited in memory as a prlm-, I:

comprehension, through readl;ag a text or through oral instruction and loctiu r,. %Wi( ,,

accompanying knowledge about its use and conditions of applicability. Pro.edmur l

knowledge consists of sets of production rules (i.e., condition-action pairs) that define the

skill in each domain.
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The theory holds that effective and conditionalized knowledge of procedures can

be acquired only through use of the declarative knowledge In solving actual problems.

First, during solution, declarative knowledge is drawn on In applying general problem-

solving processes--weak methods, such as means-ends search, hill climbing, or analogy to

an example. The subsequent process of knowledge compilation creates efficient domain-

specific productions from the trace of the initial problem-solving episode. Compilation

consists of two major mechanisms, proceduralization and composition. Proceduralization

Is a result of comparing the problem state before and after generating the solution and

creating a production rule--the building block of the domain-specific skill. Composition,

analogous to chunking. is the result of collapsing a sequence of productions into a single

production that has the same effect as the components of the sequence. Composition

reflects meaningful cognitive contingencies as constrained by a hierarchical goal structure

for the solution of the problem. Finally, the various productions accumulate strength as

a result of practice with successful applications (much as In the strengthening of

associative bonds).

The initial interpretative process of solving problems using declarative kno\w hldw',

by means of weak methods places a high demand on conscious cognitive pro(e,-ill".

Knowledge compilation results in automaticity of application and in proficient exc.utitt

of previously acquired knowledge. It frees the working memory, leaving more capacity

for the processing of new knowledge. It also eliminates the relatively undirected -e arch

that characterizes early performance. The process of knowledge compilation i , i--iiw,,

to be an automatic learning mechanism, and the major instructional principlo,- it1%,)nl,,,

in the design of the tutors derive from theoretical assumptions about the process.
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INSTRUCTIONAL PRINCIPLES

The three tutoring programs build on detailed and explicit analyses of both

performance and learning. The ACT* theory explicates how students actually execute

the skill that Is to be taught. This knowledge comprises a performance model that

consists of a set of all the correct and incorrect production rules for performing the skill.

The model corresponds to the performance of an Ideal student and to buggy variations of

the Ideal student's rules at various stages of skill development and dot to a fully blown

expert system. The learner's actual performance is compared In real time to the rules in

the model, and the tutoring system tries to keep the student on a correct solution path.

The performance model is accompanied by a learning model consisting of a set of

assumptions about how the student's knowledge state changes after each step in solving

a problem. Using parameters derived from the ACT* theory, the student's history of

correct and Incorrect application of productions provides an updated probabilistic

estimate of the availability and the strength of the productions comprising the ,kill

(similar to response probability In statistical learning theory models for -,.:l1,,l:I,.

instruction [Atkinson. 19721). Trackings of changes across problems en:nble- I 1w I 11h I,

select problems appropriate to the student's knowledge state in order (, ,lqimi/o

learning. Within this general model tracing paradigm, instruction is guided by 'w,'r;il

principles.

Learning via problem solving Learning occurs by doing, by interpretation

of declarative knowledge via problem solving. A given problem provides a set of

applicability conditions relevant to problem-solving goals. It is assumed that in order for

the student to retrieve the learned information In solving other problems, he or she

Initially has to encode It In a similar problem-solving context during studying. The CMIV

group advocates shortening preliminary instructional texts, refraining from elaborated

explanations, and focusing on procedural information and on actual problem solving as
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soon as possible. Textual instructions should be carefully crafted to maximize correct

encoding, but the Inevitable misunderstandings should be corrected during problem

solving.

An Ideal problem-solving structure for the domain Each tutor

communicates a particular problem-solving structure best suited to the domain.

Carrying out geometry proofs, for example, requires backward and forward search for

logical Inferences between the givens and what is to be proved. To explicate the search,

the tutor uses proof graphs. A proof is completed when a set of subgoai; reached by

backward inferences from the to-be-proven statement is actually linked with a , ()I*

subgoals reached by forward inferences from the problem's givens. The proof trraph,

represent, the actual problem-solving space and explicate the search process for

constructing a geometry proof. In contrast, constructing a program in LISP is a design

activity and has a very different structure, that of problem decomposition.

programming goal has to be decomposed Into subgoals until goals are reached 1l1:11 (-:111

be achieved with specific code. For instruction, the LISP tutor provides a tenilpnt'

organized in a hierarchical goal structure with slots that the student must fill.

Problem specification and immediate error correction Knowledge

compilation and the strengthening of acquired productions result from successrul

applications or the productions. To ensure maximal correct, performance. the tiI(lr

monitors the student's learning closely by selecting problems and by displaying and

constraining the solution steps. The selection of problems is guided by a mastery model--

the tutor presents problems involving new rules only when the student has attained a

certain threshold level of competence on the current rules. Appropriate additional

problems and accompanying instructions provide practice on those production rules that

are diagnosed as weak or missing in the student's knowledge state.
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During problem solving, the tutor traces the student's performance by matching it

to the system's model for a correct solution and Intervenes as soon as the student

deviates from one of the possible correct solution paths. Errors are corrected

Immediately, both to avoid lengthy exploration of erroneous paths and to assign blame at

actual decision points. The feedback consists of identifying errors and suggesting how to

proceed. A complete or a partial solution may be offered, but, In keeping with the

principle of learning by doing, wherever possible, the student Is required to produc,, I, le

correct solution.

Minimization of working memory load Because acquisition of l1(w

knowledge places burdens on memory, the tutoring environments aim to minimize the

cognitive load. They implement all components accessory to the target skill. For

example, when the skill is writing code, the editor of the LISP tutor takes care of such

syntactic details as supplying parentheses or the structure of a function. The tutors also

maintain relevant contextual Information on the screen; for example, the LISP tutor

displays the current goal stack to support the student's memory of solution steps.

OVERVIEW AND ANALYSIS

It is worthwhile to consiler the scope of the Instructional theory and of the

learning principles involved in these tutors. First, they are not claimed to be appropriate

for learning objectives other than acquisition of proceduralized skill. Furthermore, the

only learning mechanism that guides the current tutors Is the automatic process of

knowledge compilation. However, other more conscious Inferential mechanisms might be

Involved. Identifying such mechanisms could lead to different Instructional

recommendations. For example, as Anderson (1987) has pointed out, analogical problem

solving Is fundamental In the skill acquisition domains that the CMU group has been

studying. In the course of learning, students resort to examples from the same or another

domain that are retrieved from prior experience. The process by which analogous
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experience helps students solve new problems and Its Implications for Instruction are 11(a

yet specified. Also, the present view of skill acquisition Is minimally adaptive i,

differences in previous knowledge. Students are assumed to enter the learning ,itu: tion

with only limited declarative Information and with an Intelligent person's set of general

problem-solving heuristics. This approach might be appropriate for achieving

elementary levels of skill proficiency In well-structured tasks, such as learning the synitx

and semantics of a new programming language. In more complex reasoning tasks: 1Il Imr

more sophisticated expertise (e.g., program planning and debugging [Soloway & Johnson

19841), consideration of understanding and organization of the declarative knowledge

may be essential.

Although successfully fostering skill proficiency Is, In Itself, an Important goal, the

focus on an automatic learning process of skill acquisition may be further guided by the

assumption that acquisition of efficient skill at each level of expertise is a necessary

facilitating condition for subsequent depth of understanding and reasoning. The view

that understanding and planning ability will emerge as by-products of the basic learning

mechanisms for skill acquisitions might also be Involved. This conceptualization of

learning Is shared by others (e.g., Anzai & Simon 1979, Neches 1984, Klahr 1984, Siegler

1989) who stress learning by doing and focus on the procedural efficiency achieved with

practice. They believe that proceduralization of knowledge results in qualitative changes

in knowledge structure and In changes of choice of cognitive strategies. Slegler (1989)

has suggested that extensive practice on such skills as addition, subtraction, reading, and

time telling leads to changes in response distributions that later result In switches of

strategy choice (from calculation to retrieval). The theoretical Implication is that major

metacognitive changes are an unconscious byproduct of highly practiced successful

performance. Of course, others, like those whose work we discuss later, would disagree

with such an exclusive focus on skill acquisition. How much learning can be explained
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by mechanisms such as knowledge compilation and how skill efficiency rel ,le t, (11i1-r

aspects of expertise remain open empirical questions.

Anderson views learning as a domain-independent and relatively simple process.

Disparities between domains result from different organization of productions and from

differences In the Initial usefulness of general heuristics. Because the instructional

principles in the tutoring programs derive from a general theory of skill acquisition.

Anderson holds that the pedagogical strategies can be decoupled from the domain

knowledge. His theory of human skill acquisition reflects belief In generalizable basic

learning principles, so the most effective tutoring strategy simply would optimize use of

these learning principles (Anderson, Boyle. Corbett, & Lewis. 1988). The assumed

generality of the underlying learning theory Is to be kept In mind as we review other

Instructional approaches.

Anderson's theory and work are continuous, to an appreciable extent, with the

learning tradition In experimental psychology In which emphasis is placed on the

transition of a skill from an Intermediate associative phase to a final autonomous phase

(Fitts 1962, Fltts & Posner 1967). In that tradition, the component subroutines are

acquired and integrated in the Intermediate phase, and they become less subject to

cognitive control and environmental Interference and require less conscious processing in

the final phase. In addition, the close control of the learning process, the immediate

feedback during problem solving, the focus on minimizing errors, and the gradual

approximation to experts' behavior by accumulation of separate parts of the skill are

reminiscent of Skinnerlan shaping and successive approximation and of the early

variations of programmed instruction. The cognitive sophistication of Anderson's theory,

however, requires also organizing the productions according to the problem-solving

structure of goals and subgoals, as well as introducing the intellirent component of the

Instructional system to trace the student's knowledge and performance.
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SELF-REGULATORY SKILLS AND

PERFORMANCE CONTROL STRATEGIES

Studies of expert performance, work in developmental psychology, and Al

problem-solving models reveal the role that self-regulatory or control strategies play iin

competent performance. The experience of experts enables them to develop executive

skills for monitoring performance; they rapidly check their work on a problem,

accurately judge its difficulty, apportion their time, assess their progress, and predict the

outcomes of their performance (Simon & Simon 1978, Larkin et al 1980, Brown 1978,

Miyake & Norman 1979, Chi et al 1982). These self-regulatory skills vary In individuals

and appear to be less developed In those with performance difficulties. Superior

monitoring skills both reflect the efficient representational skills of experts in their

domains and contribute to the utility of their knowledge. Because knowledge of a rule or

procedure is enhanced when one can oversee Its applicability and monitor its use, self-

regulatory skills are Important 6utcomes of learning.

The Investigations of developmental psychologists support the view that the

growth of metacognition is a significant dimension of evolving cognitive skills from

childhood onward. The emergence of metacognitive processes has been examined in

work on children's knowledge of their own abilities (Flavell et al 1970, Brown et al 1983,

Bransford et al 1986), their comprehension monitoring (Markman 1085), their allocation

of effort and attention, as well as their editing and error correction during problem

solving.

In work on artificial Intelligence, the design of problem-solving systems requires

central strategies for deciding what operator to apply and where and when to apply it, as

well as a database describing the task domain and a set of operators to manipulate the
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database (Barr & Feigenbaum 1981). The control strategies define planning processes

that are implemented in a hierarchical database structure or that can be more

opportunistic and applied to local decisions as a plan develops. Thus, competent

problem solving can be both plan and event driven. In the design of computer models of

cognition, researchers have either assumed that a separation between resources and

control is not essential, as it Is In production system models, or made a distinction

between the two, not only as a programming convenience, but as a characterization of

human cognitive processes. This distinction becomes especially Important in learning

and Instruction when the learner's strategies for accessing information cannot be

assumed to be well developed. Thus, many lines of work force consideration of the

development of executive control performances as an Important dimension of learning

and instruction.

Internalizing Self-Regulatory

Strategies for Comprehension

Instructional programs in reading, writing, and mathematics designed to foster the

development of self-regulatory skills through supportive modeling of task performance

are a major area of research (Collins et al 1988). A program for reading comprehension

developed by Brown and Pallncsar (1984, 1988) has received sustained analysis and been

widely cited. Students In this program acquire specific knowledge and also learn a set of

strategies for explicating, elaborating, and monitoring their understanding that is

necessary for Independent learning. The knowledge acquisition strategies they learn In

working on a specific text are not acquired as decontextualized skills, but as skills that

are Instrumental In achieving domain knowledge and understanding. The instructional

procedure, called Reciprocal Teaching--reciprocal In the sense that teacher and a group

of students take turns In leading the procedure--specifies strategies for comprehending

and remembering text content. Its three major components are (a) instruction and
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practice with strategies that enable students to monitor their understanding; (b)

provision, initially by a teacher, of an expert model of metacognitive processes; and (c) a

social setting that enables joint negotiation for understanding. The last two components

appear to be ingredients In the success of apprenticeship learning in natural settings (cf.

Greenfield 1984, Lave 1977, Lave et al 1984).

THEORETICAL BACKGROUND

Two general conceptions In developmental psychology underlie the notions of

learning that Influence this approach. One is that conceptual change is self-directed, In

the sense that humans are Intrinsically motivated to understand the world around them.

Internal structures, principles, or constraints predispose learners to search for causes and

explain events to extend their knowledge. Equipped with Initial knowledge (facts,

concepts, and rules), the learner tries to Impose a causal explanation on the situation at

hand. Failure to generate an explanation creates a conflict or dissatisfaction with the

existing state of knowledge. Such a conflict triggers mental experimentation (Gelman &

Brown 1986) to seek data to test and modify the current explanations. Inquiry proceeds

until the learner Is able to generate a satisfactory explanation. This new explanation,

both the result and the process of generation, is assimilated through restructuring or

replacing the Initial knowledge organization.

The second general conception derives from theories that emphasize learning's

social genesis. Conceptual development in children involves Internalizing cognitive

activities originally experienced In social settings. Thus, the process of generating

explanations, whether enacted by the learner himself, with the help of others, or even

completely by others, Is believed to be internalized gradually. Internalization (after both

Plaget [19261 and Vygotsky [19781 is considered to be a key mechanism of learning.

(Brown points out that detailed explication of this mechanism and of the processes

involved In assimilation and restructuring have yet to receive theoretical and empirical

analysis.)
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INSTRUCTIONAL PRINCIPLES

Strategies for monitoring comprehension The program focuses on four

strategies: questioning, or posing questions about the main content of a paragraph;

clarifying, or attempting to resolve misunderstandings; summarizing, or reviewing the

gist of the text; and predicting, or anticipating text development. These activities serve

to improve comprehension by signaling and monitoring progress toward understanding.

Inability to summarize a section, for example, indicates comprehension failure and

Initiates efforts to clarify the problematic aspect of the text. The application of these

strategies structures and constrains the discussion. Thus, the dialogue leader, usually

first the teacher and later the students, begins by asking a question on the main content

and Invites clarifications, then summarizes the gist, and, finally, asks for predictions

about future content.

The teacher as model and coach The role of the adult teacher Is adapted

from principles of guided learning, especially those of expert scaffolding (cf. Bruner

1978, Wood 1980) and Socratic tutorial dialogues (cf. Collins k Stevens 1982, Davis

1966). First, he or she models mature comprehension activities by explicating use of the

target strategies. Students can observe the teacher retelling content In her own words,

asking what something means, or posing questions about main points, Watching the

teacher model, students become familiar with the strategies and with their utility for

penetrating a text to extract central facts or themes. Also, they learn that understanding

Involves active construction of meaning.

After modeling the techniques, the teacher transfers the leading role to one or the

students and assumes the role of a coach, ready to Intervene or not, as necessary. For

example, when a student Is unable to generate a question, the teacher may suggest Ti,,

content and/or the form of a possible question (e.g., what would be a good questhmi



Glaser & Bassok 19 !3 February 1989

about the pit vipers that starts with the word why?), or, If necessary, pose the correct

question and ask the student to repeat It. When the learner manages the task on his

own, the teacher fades out her Intervention and primarily supports the ongoing

discussion. (The metaphor for such coaching, a scaffold, captures the idea of an

adjustable temporary support that can be removed when no longer necessary.)

Shared responsibility for the task The Vygotsklan concept (1978) of

thinking as essentially the individual's re-enactment of the cognitive processes that were

originally experienced in society underlies the program's focus on group learning. The

program's provisions for the learning group are adapted from studies that have pointed

out the motivational and cognitive variables involved In shared responsibility for

thinking that enhance learning In group settings. (See Brown & Pallncsar [19881 for a

review of relevant studies.) Cooperative learning provides social support,

encouragement, and rewards for Individual efforts. From a cognitive perspective, a

group serves several additional roles. First, It extends the locus of metacognitive activity

by providing triggers for cognitive dissatisfaction outside the individual. An audience

monitors Individual thinking, opinions, and beliefs, and can elicit explanations of how

and why that clarify points of difficulty. The learner's exposure to alternative points of

view can also challenge his initial understanding. In addition, with the help of a teacher

who provides expert scaffolding, the collaborative group maintains a mature version of a

target task. Overall, by sharing it, a complex task is made more manageable without

simplifying the task Itself. The group achieves understanding until such time as its

members have acquired the skills themselves. Each learner contributes what she can and

gains from the contributions of those more expert. The Reciprocal Teaching method.

with Its combination of group discussion and scafrolded instruction, creates a zonc or

proximal development where learners perform within their range or competence while

being assisted in realizing their potential levels of higher performance (Vygotsky 1978).
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In keeping with the goal-dlrectedness, integrated character, and conditionalized

nature of competent performance, programs like this one encourage teaching in the

context of problem-solving situations that approximate mature practice. Also, they

emphasize comprehension and meaningful outcomes as objectives of learning via the use

of cognitive strategies. The learning strategies Involved are seen as Instrumental to

acquisition of content and skill in a domain of knowledge. The strategies employed are

not claimed to be heuristics or processes comprising generalized, all-purpose skills U

intelligence and general learning ability. Rather, they are designed for and tailored to

the specific domain being taught and are learned and practiced while being used for

solving problems In that domain. Indeed, within the same general approach, different

sets of specific strategies are suggested in programs for teaching other domains.

Related Work A program of procedural facilitation for teaching writing

composition shares many features with Reciprocal Teaching (Scardamalia et al 1984).

The method Involves explicit prompts aimed at supporting student's adoption of the

metacognitive activities embedded in sophisticated writing strategies. The prompts help

students Identify goals. generate new Ideas, improve and elaborate existing ideas. and

strive for their cohesion. Where students In Reciprocal Teaching take turns in le:tlilii

the discussion, students In the procedural facilitation program take turns presenting to

the group their Ideas and their use of prompts In planning to write. The teacher also

models the procedures. Thus. this program too involves modeling, scaffolding. and turn

taking designed to externalize mental events In a collaborative context.

A program designed by Alan Schoenfeld teaches heuristic t',h,u, ,

mathematical problem solving to college students (1983. 1985, 1988). mwii+,l Ierj'i I.,,

some extent, from the problem-solving heuristics of Polya (1957). Schoenfreld- l,n,1V:1lI

adopts methods similar to Reciprocal Teaching and procedural facilitation. fie rech,,



Glaser & Bassok 21 13 February 1989

and demonstrates control or managerial strategies and makes explicit such processes as

generating alternative courses of action, evaluating which course one will be able to

carry out and whether it can be managed In the time available, and assessing one's

progress. Again, elements of modeling, coaching, and scaffolding, as well as collective

problem solving and class and small group discussions are employed. Gradually, students

come to ask self-regulatory questions themselves as the teacher fades out. In an

interesting variant of teaching tactics, at the end of each of the problem-solving sessions,

students and teacher alternate in summarizing a solution episode by analyzing what they

did and why. Those recapitulations highlight the generalizable features of the critical

decisions and actions and focus on strategic levels rather than on the specifics of solution.

Furthermore, Schoenfeld directly confronts the issue of Imparting an appropriate

belief system about the interpretive nature of mathematical problem solving. During the

process of learning mathematics, students begin to realize that searches often come to

dead ends, exploration of possible heuristics and different paths does not guarantee

solution. He challenges his students to find difficult problems for him to solve so they

can observe his own struggles and floundering, which legitimate students* floundering as

well. Students begin to realize that mathematics requires not merely recognizing

principles, nor merely applying procedures, but, rather, a creative Interpretive process of

exploration and reasoning.
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OVERVIEW AND ANALYSIS

In these programs, students do learn to apply the appropriate set of monitoring

strategies, and there is improvement In domain skill. The designers, however, have the

more ambitious objective In mind that students develop particular attitudes toward their

own learning. While learning to apply various cognitive control strategies, students are

expected to acquire a conception of learning and problem solving In which skilled

cognitive strategies guide their activities. An important question Is to what extent

students can generalize this attitude and transfer the strategies to other situations and

across domains.

It Is interesting to note the critical shared assumption In these programs that

thinking skills are best cultivated in the context of the acquisition of domain knowledge.

The shift in cognitive science and AT from modeling general heuristics to specifying uses

of knowledge and the findings on the knowledge-derived processes of expertise i\v,

warrant to that assumption. We cannot consider here the range of current :.ti\ .) o,

teaching the processes of general intellectual ability and general problem-;oIvin and

thinking skills to support learning (cf. Chipman et al 1985, Segal et al 1985. Glaser 198-1.

Resnick 1987a, Bransford et al 1986, Sternberg 1986. Nickerson et al 1985). It Ik our

judgment that, at present, the research on general Intellectual abilities. as they r+11- 1,,

Instruction, need further investigation. As our concluding discussion indicates, h(wvev-r.

it, is possible to anticipate the eventual synthesis of these findings with detailed analysis

of specific domain learning.

There are certain similarities among the Instructional principles employed in this

group of programs and those in the tutors for procedural skills. For example. in the

tutors developed by the CMU group, students are kept on a correct solution path and

are not permitted to flounder. When a student chooses an incorrect move, the tutor
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Intervenes to identify the error and promptly suggests an alternative move If the student

Is off tr. '. When the tutor Identifies a bigger problem, it intervenes with several

examples. Similarly, In the Reciprocal Teaching method, Brown and Palinscar stress

that the teacher keeps the discussion focused on the content and closely monitors the

student leaders, providing feedback or resuming control as necessary. There are further

similarities with respect to successive approximation, to gradual fading of support, and to

explicit modeling.

However, these two sets of programs present very different views of the learner.

The knowledge compilation approach sees the learner as striving for efficiency in

performing a well-defined skill; the metacognitive programs conceive of the learner a

motivated to explore and seek explanations. These two views and the instru.lim,,ml

environments they prescribe might be taken as complementary: the firsl wuili ho

appropriate for novices' acquisition of basic skills, whereas the latter would ho

appropriate for advanced students' acquisition of strategic skills In the -ervice ,)

understanding. Nevertheless, the two conceptualizations of the learner and of the

process are not easily bridged, regardless of choice of objectives or domains. Those who

adhere to the metacognitive approach fault current modes of schooling because students

often acquire skills mechanically; although efficient, these skills remain as inert

knowledge that is not easily accessible In different situations. So we can expect

expanding research on metacognitive approaches to the acquisition of basic skills. The

Interesting Issue Is whether the extensive practice required to attain reasonable efficiency

and automaticity In basic procedural skills might be achieved not only in highly

structured environments in which students practice subcomponent procedures, but also

in the context or the mature task format of a reciprocally supportive cooperative

learning group.
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Finally, it Is worth repeating that, although the various programs for teaching

self-monitoring skills are based on a detailed analysis of strategies used by successful

readers, writers, and mathematicians, the assumed learning mechanisms of

Internalization, assimilation, and restructuring are, as yet, little understood.

KNOWLEDGE ORGANIZATION

AND STRUCTURE

As competence Is attained, elements of knowledge become increa.singly

Interconnected so that proficient individuals access coherent chunks of information.

Beginners' knowledge of a domain is spotty, consisting of isolated definition- :;uii

superficial understandings of central terms and concepts. As proficiency deveot' I l,, ,

items become structured and are integrated with past organizations of knowledge so 111t1

they are retrieved from memory rapidly and in larger units (cf. Rumeihart & Norman

1978). The exceptional memory retrieval of experts in a domain is based on the

structured content of stored information (Ericsson & Staszewski 1988). These organized

structures of knowledge are referred to as schemata (Rumelhart, 1980). Such structures

evolve and are modified and elaborated to facilitate more advanced thinking, and tley

enable forms of representation that are correlated with the ability to solve problems.

It Is now well known that novices work on the basis of the surface features of a

problem and that more proficient individuals make inferences, Identify principles, and

envision mental models that subsume surface structure. In research by Chi, Glaser, and

Rees (1982), novices and experts were asked to group mechanics problems. Novices put

together problems that involved pulleys, inclined planes, and so on. Experts, in contrast,

grouped those solvable with Newton's laws of motion, on the one hand, and those

solvable using energy equations, on the other. The expert apparently organizes his or

her knowledge in terms of schemata not salient to the novice, as Is apparent In analyses
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of the solution processes. Larkin, McDermott, Simon, and Simon (1980) have shown that

when solving mechanics problems, novices use painstaking means-end analysis, working

backward from the unknown with equations that they hope are relevant to the problem.

Experts, in contrast, apply correct equations In a forward direction, Indicating h:11 1I1('y

have a solution plan in place before they begin. Again, schemata appear t( viri IIe

experts to grasp the structure of problems and then proceed with quantitative sli01 ioli

in a way that novices cannot. Such representational ability for fast recognition and

perception of underlying principles and patterns and Its use In problem solving has been

replicated In a variety of domains (e.g., Chi et al 1988). The pre-eminence of expert

pattern recognition is such that the expert virtually sees a different problem than the

novice (Charness 1988).

A related line of current research Is concerned with qualitative reasoning In the

use of mental models that people construct of situations and systems they attempt to

understand (Gentner & Stevens 1983, Johnson-Laird 1983). These runnable mental

simulations are built, used. and modified as proficiency is acquired. The use of models

reveals Important aspects of Inferencing that facilitates problem solving and

comprehension. Access to mental models in familiar domains of knowledge can foster

reasoning that Is not present in abstract logical problems (Falmagne 1980, Johnson-Laird

1982, 1983). Problem solving Is differentially effective depending on the type of mental

model employed (Gentner & Gentner 1983). Within an Al framework, Brown and

deKleer (1985) and Forbus (1985) propose formalizations of causal and qualitative models

people use when reasoning about physical processes. Within cognitive psychology,

Stevens and Collins (1980) have described multiple mental models that students hold for

explaining such natural processes as rainfall, and they suggest that learning is a process

of addinp, replacing, deleting, generalizing, and differentiating parts of the model and of

mapping between different models. In related research, Collins and Gentner (1987) have
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described the use of analogies and their integration In constructing various component

models for the process of evaporation. AI and psychological approaches have bevii

combined by Forbus and Gentner (1986), who suggest a progression of mental niodelk in

which causal and qualitative models are necessary to the development of expert-like

quantitative mathematical models.

In general, structured knowledge enables Inference capabilities, assists In the

elaboration of new Information, and enhances retrieval. It provides potential links

between stored knowledge and Incoming Information, which facilitate learning and

problem solving. Two lines of Instructional work serve here as examples of program,

that are guided by research on structured knowledge. The first has evolved In the Al

tradition of knowledge engineering and the construction of expert systems. Its central

aim Is Imparting to the learner the knowledge characteristic of well-developed expertise.

The second line of work Is. newer and originates from research on qualitative reasoning

and on the evolution of mental models.

Structuring Knowledge for Problem Solving

The analysis of Information structures In the form of knowledge networks Is

documented as an approach to Instruction beginning with Carbonell and Collins' (1973)

SCHOLAR program. In this so-called mixed-Initiative Socratic tutoring program, the

system and the student Initiate conversation by asking questions; knowledge about the

domain being tutored is represented In a semantic network. Since that time, with the

growth of Al and the development of intelligent computer tutors, Increasingly advanced

attempts at explicit tutoring In the context of expert knowledge structures has forced us

to investigate the kinds of knowledge representation that facilitate students' Interaction

with the domain expert or with the expert teacher.
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The GUIDON project, led by Clancey (1986), Is a carefully documented attempt

to use a model of expert knowledge to design an Intelligent tutoring system. The

learning objective is the acquisition of a well-organized body of knowledge in the

complex domain of medical diagnosis and of the heuristic strategies required to use this

knowledge for practical problem solving. The Initial base of expertise, modeled in the

system's forebearer, MYCIN (Shortliffe 1976), consisted of knowledge In the compiled

form that characterizes the expert problem solver. Although excellent in its performance

capabilities, It lacked the explicit organization and reasoning strategies necessary for

tutoring. This additional expertise was modeled from the explanations generated by a

good physician-teacher. Accordingly, the base of expertise was reconfigured

(NEOMYCIN, Clancey & Letsinger 1984) into a structure of knowledge that represented

the expert's principled understanding of the domain, as well as a large number of

problem-solving routines In decompiled form. This new knowledge base was organized

into categories of general principles that underlie domain knowledge, definitional and

taxonomic relations, causal relations, and heuristic rules and strategies. The reasoning

strategies Involved revolve around the management of hypotheses-grouping hypotheses

Into more general cases, refining them Into special cases, differentiating them, and so

forth. Within the expert model for medical diagnosis, these strategies are represented as

general reasoning processes of Inference that are separated from the domain knowledge.

The next step In the evolution of the project was construction of a domain-

independent expert system that builds on the reasoning strategies underlying a class of

problem-solving tasks demanding heuristic classification (HERACLES, Clancey 1984a,

1985). In this system, a predetermined taxonomy is used to relate features of the data to

descriptions of candidate categories. The system is general enough to fit such domains as

electronic troubleshooting, where one has to recognize known malfunctions from

symptoms, as well as other forms of problem solving where a fixed set of solution



Glaser & Bassok 28 13 February 1989

methods must be selected relevant to specific situations. This evolution in the

conceptualization of expert knowledge, from a compiled set of domain-specific rules to a

set of general strategies that operate on an organized body of knowledge, was

accompanied by a change In the Instructional objective and In the conception of the

learning process. In recent developments (GUIDON 2, Clancey 1984b), the Instructional

objective Is not only expertise In medical diagnosis, but also the learning process by

which one actively constructs an organized body of functional knowledge. Accordingly,

the Instructional strategy is no longer to present information to the learner in order to

fill a knowledge base; rather, it is to provide an environment for active and self-directed

learning in the context of explicit expert knowledge.

THEORETICAL BACKGROUND

The learning process in this approach is characterized as Ofallure-driven,

explanation-based learning for nonformal domains* (Clancey 1987, p. 27). Learning is

based on detection and explanation of problem-solving failures. The failure detection as

well as the suggested repairs result from the learner's efforts to apply existing partial and

Incomplete schema to the solution of a specific problem. The learning objective Is to

acquire new knowledge in the context of generating a causal solution linking conclusions

to findings. This conception of learning emphasizes the active role of learners, who

direct their own learning by generating plausible conjectures about missing knowledge

and by posing focused questions to an expert teacher.

More specifically, the learner is assumed to have background knowledge about the

domain to be taught. For instruction with the medical tutor, students' knowledge of

fundamental medical terms and concepts and disease processes Is assumed. Equipped

with this initial knowledge, the learner is Introduced to the expert's knowledge

representation as organized hierarchically and taxonomically. The learner is also

introduced to a set of general heuristic inference rules for grouping, differentiating, and
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testing hypotheses. To foster generality, these rules are expressed In generic language

rather than in terms of diseases and symptoms. Thus, the classifications of disease and

symptom type, cause, and location are treated in terms of a general diagnostic reasoning

process of clarifying findings, providing data to discriminate between hypotheses, and so

on.

The student's prior knowledge about disease processes, together with her Initial

understanding of the expert knowledge representation and Inference procedures for

classification, constitute a partial schema (or an Incomplete general theory) of the

diagnostic relations. This schema guides the student's Inquiry to a situation specific

model for a particular case. Given a case, the student acts as a diagnostician, proposing

hypotheses about the nature of the disease and gathering data to guide further

hypothesis generation and testing. The process of diagnosis builds a coherent argument

that causally relates all the findings or symptoms to be explained to the processes that

brought them about. The system displays the student's solution as a progressive

extension of a graph (similar to the graph representation for constructing a geometry

proof In Anderson's tutor) that links conclusions to findings, until the graph represents

all the relations for the case.

The student herself directs the diagnosis by Implementing inference strategies and

by Interpreting the evolving solution. Learning is driven by failure; the student may be

unable to test or to refine a hypothesis, to explain or Justify a finding, or to discriminate

between two or more hypotheses that explain the same findings. After detecting the

failure, which Is Indicated by the inability to generate a link in the solution graph, the

student has to generate possible repairs by reasoning about the additional domain

knowledge that, If available, might have prevented the failure. She then articulates the

nature of the deficiency by posing a specific question to the system. If the Information
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proves sufficient to generate the desired link, the student updates her knowledge base

accordingly.

INSTRUCTIONAL PRINCIPLES

Because the methodology of the knowledge-engineering approach required shaping

Instruction around an expert model for a domain, it demanded a careful analysis of

domain structure and decompilatlon of expert knowledge. This analysis was followed by

construction of a validated model of expertise, which performs the tasks the student is to

learn. The Instructional system was developed as a separate expert system; ideally, it can

be used with any domain of the heuristic classification type by adapting It to the nature

of the domain. The following Instructional principles are embedded in the approach.

An articulated expert model as an object of study The student has the

opportunity to explore -the expert's knowledge organization by browsing through its

taxonomies and tables. She can see the expert's reasoning during problem solving and

can pose questions or request explanation at any time. An articulated representation of

the expert's decompiled knowledge and a simulation of the correct problem-solving

process are available to study and emulate as the student constructs her own

understanding of the domain.

Explication of the reasoninx process The student is explicitly Introduced

to the nature of the reasoning process by observing the system diagnosing specific cases

using strategies of heuristic classification (The GUIDON WATCH system, Richer &

Clancey 1985). Furthermore, students can observe the specific problem representation (a

connected graph) and the appropriate vocabulary for applying the strategies and for

requesting Information. Through the use of a domain-independent representation of

reasoning and of domain-independent terminology, it Is hypothesized that students will

learn strategies applicable to other domains as well.
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Construction of a situation-specific model The student Is presented

with a realistic problem-solving context that forces the construction of a situation-

specific model describing the processes by which the problem features were produced.

Because the situation model Is intimately tied to the goal of solving a problem, it

provides an ideal environment for detecting failures and for hypothesizing and testing

new facts. What the student learns Is based on acquiring knowledge that arises in

solving a particular problem and is directly related to the inference procedure being

applied.

Self-directed learning The learner controls and directs the learning

process. First, in generating a situation-specific model In the form of a connected graph,

the learner herself can detect a failure. Second, in attempting to repair a failure, the

student has to determine what information Is needed and to formulate a specific question

for the expert teacher. A basic assumption Is that learning will be more efficient if the

student determines what she needs to know, rather than if the teacher builds and tests a

model of her current knowledge.

OVERVIEW AND ANALYSIS

The notion of learning that drives the program focuses on the acquisition of new

domain knowledge and inferencing skills, not on the processes of knowledge chunking

and compilation. In a sense, the two approaches could be conceived as complementary,

assuming that, as the learner acquires new knowledge while diagnosing consecutive cases.

it becomes proceduralized and the learner becomes more efficient in applying diagnostic

skills. The difference In focus, however, Is accompanied by disparate conceptions of the

learning process and leads to different Instructional principles. Although, as in the

knowledge compilation programs. GUIDON 2 assumes that learners begin their problem

solving with an Initial body or declarative knowledge, the latter strongly implicates the

Initial organization of that knowledge to serve as a partial schema. This schema allow.-
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mindful application of reasoning strategies for locating failures and developing a more

coherent representation. GUIDON 2 also focuses explicitly on the acquisition of new

declarative knowledge through the conscious processes of error detection and repair.

The minimization of errors suggested in the theory of automatic knowledge compilation

Is a sharp contrast.

In GUIDON 2, there Is no control or intervention from the tutor other than

responding to the student's requests, no shaping or successive approximation. The

programs that focus on teaching metacognitive strategies share with GUIDON 2 the

conception of learning as failure driven and motivated by the desire to resolve conflict

and to construct an explanation using a set of executive strategies. But the

metacognitive skills groups, those working with children as well as adults, rely on careful

shaping of learning strategies by the teacher. In Implementing his program, Clancey

may find that It is Insufficient for a student to observe the system In order to learn the

various heuristic strategies and that more direct Intervention Is needed from the tutor.

Although Clancey makes assumptions about learning, the instruction is based

principally on the analysis of competent performance. His most recent conceptualization

(Clancey 1987) of the learning process builds on the analogy between how a knowledge

engineer probes the human expert to model expertise and how an ideal learner might

observe and interact with expert performance. He plans to develop a learning model of

the probing tactics and to design a tutorial program that conveys them to the student.

The learner then will be able to emulate the model's efficient learning performance, and

the tutorial program will be able to make decisions for guiding the ongoing learning

based on the model. The rationale behind this plan is that it is not sufficient to anwilyzc

only the target knowledge that comprises expertise; it is necessary also to undeIr,:1i1,I

knowledge acquisition, to carefully analyze both the various strategies iiet()I oo r-o
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and to Interrogate the expert and the knowledge updating and restructuring that occur

during learning.

It is interesting to compare this approach to the model tracing approach in

Anderson's tutors for procedural knowledge. There, the mode, of the learning process is

used by the tutor for tracing and correcting the student's solution path, but the model's

production rules are not presented to the student. Because Clancey deals with learning

that requires conscious choice of strategies, conscious self-monitoring of understanding,

and systematic Interrogation of the expert's knowledge, he Intends to present students

with an explicit learning model. This conception is similar to that in the apprenticeship

programs, which stress the exposition of explicit learning strategies. Emphasizing

conscious strategy use may be important to the acquisition of new knowledge, as well as

to the creation of a repertoire of backup strategies for future recovery from failure and

for coping with unfamiliar situations.

It is int,-resting also to discuss the work on GUIDON 2 with respect to generality

and transferability. First. Clancey points out that he adopts a specific representation of

medical knowledge that Is tailored to diagnosis. He presents an assimilation model of

learning that does not assume any representational changes to the knowledge base.

Thus. knowledge is acquired only in the form suitable for diagnosis, not for t reatmilnt.

say. or research. Accordingly. Clancey does not expect transfer of the knoxv'd- , i, -

However, because the skill of diagnosis has a structure similar to other trak invoklvii

heuristic classification, he believes that the general reasoning involved can be tran4',rr(,.

To stress its generality, he uses general schema for heuristic classification, but it is n \ ,.

unclear whether, Indeed, students will acquire such schema through experienc(e in :, -in.

domain. (Clancey 119871 points out that an experienced knowledge enginevr. who .r.*%(.

as his model of a good learner, typically develops his expertise by interrogating cjt',,"
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knowledge In several domains.) Clancey's conception of generality and transfer is

compatible with Anderson's (1987). Anderson compares the skill of proof evaluation to

the skill of proof generation in geometry; although they are based on the same

declarative knowledge, the production rules do not overlap. According to ACT* theory,

transfer will not occur between two different skills based only on the same declarative

knowledge. Positive transfer between skills, however, may occur to the extent that they

involve the same hierarchical goal structure controlling the behavior, (Singley &

Anderson, unpublished manuscript).

Progression of Qualitative Mental Models

Instructional work that stems from research on mental models represents an effort

to teach understanding of a domain by utilizing possible transitions between the Intuitive

understanding developed as a result of informal experience and expert

conceptuail zatlons. The program developed by White and Frederiksen (1986) for

teaching trouble shooting in electric circuits focuses on qualitative causal reasoning as a

basis for conceptual understanding. White and Frederiksen assume that expert's

knowledge is organized in coordinated mental models, and, accordingly, they lead the

learner through a progression from simple to advanced models. Each m(,ntal III(.,hl

incorporates declarative and procedural knowledge as well as a control -Iiwi(.ttui, tlii:i

determines how this knowledge is used. Declarative knowledge may in do la d Ie,,.

of a device model, such as the conductivity of a resistor, or a battery as :1 (n Irco ,11

voltage. Procedural knowledge might be the method used to determine the dis.triihutio ,

of voltages within a circuit. Control knowledge could include knowing that when one

device's conductivity changes, the states of all other devices In the circuit change.

Various mental models can be specified for a domain, each or which represent., a

different conceptualization of domain phenomena. Within a causal model, a student can
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predict the behavior of a circuit knowing that a decrease in Its resistance causes a

decrease in voltage across the component. Within a functional model, she can explain the

purpose of a circuit as a whole or as the sum of Its components. The mental models can

vary In their order of description: A zero-order model can reason about binary states of

devices, such as "is the light on or off?; a first-order model can reason on the basis of

changes, Ois the light getting brighter?2; a second-order model can reason about the rate

at which a variable Is changing. Moreover, models vary In their degree of elaboration ur

in the number of rules and constraints taken into account. The objective of learning is

to achieve a coordinated set of expert-like mental models, that Is, a set of complementary

models for the same phenomena, behavioral as well as functional, qualitative as well as

quantitative. Each type can be expanded and elaborated.

THEORETICAL BACKGROUND

Learning is viewed as a process of model transformation, as a progressionI rhrtgih

Increasingly sophisticated mental models, each more adequate for a larger Set ()

problems. Transformations entail changes in knowledge and structure. Changes in

knowledge may involve adding qualifiers to rules, deleting rules, or adding new ril,..

Such changes, in turn, may result In restructuring existing knowledge. For ex;11111e. :1

new rule learned In the context of a certain device (e.g.. a battery) may be ecmded :I-

general rather than specific to that, device. In this case, all other device models (e.g..

switches, resistors, bulbs, transistors) inherit this rule. Model transformations occur in

the context of solving problems, in response to demands of more complex problems that

cannot be solved with the existing model. Facing an impasse, the student learns from

examples and from explanations compatible with the next higher model. The new levvl 4"

understanding is strengthened by success In solving problems.

The major emphasis in White and Frederiksen's work is qualitative models that

support causal explanations. They argue that students should be Initially exposed t,
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qualitative causal reasoning about a domain that connects with their naive intuitive

models of physical phenomena. The qualitative models enable students to build upon

their naive but accurate Intuitions and to override their Inaccurate conceptions. The

reasoning in their models is compatible with the general intuition that changes in states

have precipitating causes. Because causality is directional (cause= >effect), the

qualitative causal models are consistent with the view that the voltage applied to a

component, for example, determines the current through that component. In contrast, if

the student is presented only with quantitative expressions, causal relations between

current, voltage, and resistance are obscure. Using the algebraic constraints for reasoning

precludes a consistent mental model. Accordingly, they advocate that quanl;I:iv,

models of reasoning should be Introduced only after the acquisition of a (iT:fl:I' ,

conception of the domain and should be taught as a logical extension of them.

INSTRUCTIONAL PRINCIPLES

White and Frederlksen have developed, so far, a progression of zero-order

qbialitatlve models for troubleshooting. The learning environment enables students to

solve problems and to receive explanations and perform experiments while Interacting

with successive qualitative models. Each model is used to simulate the domain

phenomena, to generate articulated explanations, and to provide appropriate problems.

Sequence and choice of models and problems The models become

increasingly ccrnplex, yet are constructed to be compatible; early models are designed to

enable later transformations with minimum reconsideration. Model choices are guided

also by the ease of explanation for a current level of problem solving, although some of

the acquired rules will have to be deleted in later more complex models. Problems are

indexed according to models. Particular care is required In choosing the problems that

trigger a change of model. In general, these problems should be Just beyond the

student's level of competence. They must be prototypical to make the model difference

i i iB i i | I I I I



Glaser & Bassok 37 13 February 1989

clear and should have no distracting causes. (Where this Is Impossible, extreme cases are

used.)

Causal explanation Causal explanations are provided foi each qualitative

model. The system can turn any problem Into an example and display the reasoniii,

involved while it solves the problem. Also, at any stage during problem solving. 11,,

student can call for explanation either about circuit operation or about the logic of

troubleshooting. To assure that the task Is not too complex, explanations are pruned not

to repeat what Is known and to refer only to the information necessary at a given model

level.

Teaching and supporting multiple learning strategies The systen)

supports various learning strategies. Students can engage in open-ended explorations

and request explanations, they can start by solving problems on their own, or they can

request tutorial demonstrations. Within the linear curriculum for troubleshooting,

students are free to decide whether, for example, they want to acquire a new concept or

to differentiate between two concepts. The authors suggest, on the basis of preliminary

findings, that students should be taught explicitly to apply the alternative learning

strategies.

Minimization of error White and Frederiksen attempt to minimize error.

They assume that, with careful presentations of models and problems and of feedback

and explanation, in principle, errorless transition to the desired knowledge state is

possible. The system, thus, does not deal with detection of bugs and misconceptions.

As criteria for learning, the authors suggest qualitative components of

understanding such as order and level of elaboration of a particular model as well as the

integration and coordination of behavioral, functional, and causal models. However, the
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qualitative measures of understanding are not implemented In the system. It is assumed

that the student's understanding is compatible with the latest level of the mnodol

mastered within a tutoring period.

OVERVIEW AND ANALYSIS

The mental models that the program attempts to teach are not simply incomplec

versions of expert models; rather, they are specifically designed for transition.

Construction of models takes Into account the initial understanding of the learner (e.g.,

that beginning students do not have a concept of a circuit or that they do not distinguish

between a resistive and a nonresistive path) based on preliminary interviews and on

observing students' progress when using the system. Also, although each model is

designed to be modifiable to enable progressive upgrading and, ideally, should be

compatible with a higher level version, considerations of learnability often demand the

introduction of assumptions or rules lacking in expert models, which are later deleted or

subsumed. The progression of models is an hypothesis about optimal transitions towards

expertise based on articulation of the transition process itself.

The transition to expertise in the mental models' approach differs from that of

knowledge engineering. GUIDON 2 provides the learner with an environment that

enables exploration of fully developed expertise, albeit in decompiled form. The learner

controls his or her own progress, and there is no predetermined and carefully designed

transition path. The mental models' mastery model of instruction, by contrast, entails a

strict curriculum, based on an hypothesis about the best transition route. The units of

learning are not component productions, but bigger encompassing conceptual units.

In the current sequence of mental models, all models involve qualitative causal

reasoning, although the designers acknowledge that explicating causality is insufficient

for deep understanding. Thus, Important questions are at what point in instruction
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other conceptualizations (e.g., quantitative and physical) should be Introduced, whor e;'

these should be initially taught in a separate sequence, and how they should be

integrated. Gentner and colleagues (e.g., Collins & Gentner 1987, Forbus & Gentuer

1986) have suggested the Importance of an analogical mapping process for integrating

different models of a domain. Collins, Salter and Tenney (unpublished manuscript) have

Indicated, as well, that Integration requires monitoring and checking for consistency,

comparing the outcome of one line of reasoning to another. They also suggest that

consistency checking should be based on central ideas that crosscut the various models.

Finally, It Is of Interest to note that, although the White and Fredericksen

program addresses the issue of the Initial state of the learner through preliminary studies

of domain relevant pre- and misconceptions, the instruction does not accommodate

individual differences on a principled basis. Further, the transition is grounded in a

rational analysis rather than on tracing conceptual change or on a theory of such change.

Such theories have recently become of major concern for many researchers (e.g., diSessa,

unpublished manuscript, Chi 1988, Forbus & Gentner 1986).

COMMENTARY: AN AGENDA

FOR THE FUTURE

We have described a set of instructional programs that teach different categories

of human performance, deal with different subject matters, and derive from different

traditions. At first blush, there is no general view of learning processes or of

instructional methods. As gains are made in empirical and theoretical research on

learning, one may wonder to what extent such differentiation will be necessary. Is the

emphasis on automatic learning mechanisms best suited for acquiring efficient procedural

skill, whereas conscious mechanisms, such as monitoring understanding or generating an

explanation, must be emphasized for acquiring an organized body of knowledge? Does
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the choice to focus on learning of specific procedures require individualized instruction

where errors can be minimized, whereas a focus on metaconceptual skills prescribes

learning within a supportive social context that can encourage error detection? Should

we allow, for the time being, that each category of performance warrants a different

learning and instructional theory? That conclusion would echo Melton's sense, in 1964,

of the conundrum.

When one is confronted with a decision to use massed or distributed

practice, to insist on information feedback or not to insist on it, to arrange
training so as to maximize or minimize requirements for contiguous stimulus
differentiation, etc., and discovers that the guidance received from
experimental research and theory is different for rote learning, for skill
learning, and for problem solving, taxonomic issues become critical and
taxonomic ambiguities become frustrating, to say the least (p. 327).

Even if we accept that it will be difficult to achieve a unified theory of learning,

we should attempt to discover grounds for integration of the key aspects of human

competence in instruction. The apparent fragmentation may be due to each program's

attending to one specific aspect of domain competence and neglecting and/or de-

emphasizing others. The central concern with proceduralization of declarative

knowledge In the CMU group's work allows only minimal attention to the structuring of

knowledge and does not deal with processes of self-monitoring. The programs on

cooperative learning, medical diagnosis, and knowledge restructuring do not attend to

Issues of efficiency and of automaticity. The mental models' approach does not deal

with metacognitive skills, nor do the programs for reading comprehension strategies and

heuristics for solving mathematics problems tackle the Issue of knowledge structure. It

appears to be as yet Impossible In research on Instruction to attend to the many

ingredients of performance, Each of the Investigators simplifies objectives by focusing on

one aspect or another, choosing the aspect that seems appropriate to the domain and to

the values, tradition, and techniques with which he or she Is most familiar. It Is good

science to avoid confounded effects, but the eventual objective in these studies Is
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obviously not isolated phenomena; competence is characterized by both efficiency and

principled understanding, by both pattern recognition and conscious monitoring.

Accordingly, the process of transition or the various learning mechanisms may not

operate in isolation.

As the field of instructional psychology builds from the kinds of research

examined here, assessing the potentialities for integrative approaches should be a

recurrent theme. To design experimental programs aimed to foster integrated

competences, It may be necessary to proceed by teaching relatively separate, yet

complementary, components of performance in sequential, spiral, or alternating phases.

Under some circumstances, a program might teach a skill to a high degree of efficiency,

and then use it In the course of developing higher levels of cognitive processing In that

domain. In this way, planning processes, inference, and changes in knowledge structures

could take place with memory freed of the demands of an inefficient skill. In other

situations, structures of conceptual knowledge and mental models could initially be

taught or made available and practice with complex procedures would follow.

The danger of fragmentation in research is that an isolated focus on certain

aspects of performance may explain the frequent findings that students can solve

problems but have little ability to explain the underlying principles and that those who

can recite or even explain the principles are sometimes unable to recognize the conditions

of applicability or to manage the requisite procedures efficiently. A major Instructional

research task is to design programs that test approaches to the Integration of competent

performance, and perhaps the most successful approach will be able to test a mix of

instructional principles. Evidence, for example, from developmental work (Case &

Sandleson 1988a, b) shows that the ability to establish an appropriate conceptual

representation constrains acquisition of strategies and procedures, but, at the same time,
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the degree of procedural efficiency constrains the complexity of children's

representations. In other relevant research, training studies show that procedural skill is

effectively acquired In the context of a supporting mental model (Kieras & Bovair 1984;

Gott 1988). Perhaps, programs aimed at structuring knowledge could be expanded to

include the practice required for the acquisition of a procedural skill. Attempts at

integration promise to provide new grounds for the development of a more general

theory of learning. SucX a theory may include subprocesses such as those suggested by

the current programs (e.g., knowledge compilation, failure-driven learning) or some new

mechanisms that may operate In an Integrated setting).

With respect to instruction, there are already certain major principles that are

shared in the studies discussed, regardless of the aspect of competence or domain on

which they focus. All programs advocate learning In the context of working on specific

problems--be they those of writing code in LISP, understanding text, diagnosing a

medical case, or describing an electric circuit. Thus, all investigators agree that useful

knowledge Is not acquired as a set of general propositions, but by active application

during problem solving in the context of specific goals. Moreover, all programs

recommend explication and modeling of the appropriate problem-solving structure and of

the procedures or strategies entailed. The investigators also share the view that learning,

in the sense of strengthening existing knowledge, results eventually from practice that

minimizes error, and, except for the automatic process of knowledge compilation, they

agree that failure or conflict trigger new learning. Moreover, categories of performance

and related instructional subtheories may not necessitate different conditions for

Instruction. Instructional decisions about control, feedback, or about the structuring of

the curriculum crosscut approaches. Such principles do seem a basis for studies that

promise to Inform a more unified theory.
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In the programs reviewed, there seem to be two general stances toward

instruction. In the mastery approach, the instructor Is responsible for a specific

transition path, building a curriculum that carefully fosters a progressive sequence of

skills through appropriate tasks. This approach, which resembles behavioral

programmed instruction or computer assisted instruction, Is characterized by sequenced

subgoals of partial or decomposed components of the total target performance. The

mastery approach has been adopted for the acquisition of a proceduralized skill, for

fostering conceptual evolution with mental models, and for teaching heuristics for

mathematical problem solving. The second approach does not structure transition, but,

rather, provides a learning environment that can assist the learner In coping with a

complete and mature task. The learner is given certain tools or strategies to apply on

his or her own, and where he or she s unable to do so, the tutor, the teacher, or the

group provides assistance. Typically, a mastery model implies relatively close control,

whereas a less structured curriculum gives the learner more responsibility. Among the

approaches, however, there are variations In the amounts of control and freedom. The

programs using knowledge compilation, coming from learning theory, exercise more

control than the program for teaching heuristics for mathematics. Programs for shared

learning, coming from a developmental-social tradition, appear to recommend more

control and supervision than those coming from knowledge engineering.

This dichotomy may depend, to some extent, on the amount of inherent

hierarchical structure or subskill Interdependency In subject matters. Cognitive skills,

metaconceptual strategies, and procedures for problem solving have different properties

as a function of the knowledge domain. Procedural skills that are knowledge lean, those

that can be practiced with a minimal or easily acquired knowledge base, might be

learned In one way; cognitive skills that entail the constraints offered by an available

knowledge schema, those that require inference from knowledge, hypothesis formation.

and strategy selection based on emerging information, might be learned in another way.
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From another perspective, the dichotomy Is a function of research traditions and

values. Those who study learning and Instruction come to place different values on

efficiency, command of factual Information, reasoning ability, monitoring skills, and so

forth. Designers of Instruction may hold that thoughtful problem solving has greater

utility than the acquisition of efficient procedural skill, or that procedural skill should

precede the development of higher order processes, or that understanding and

appropriate mental models are essential supports for the development of procedural

efficiency. In current research, such general assumptions seem to be continuous with a

researcher's training, the findings of older learning theories (e.g., Fitts 1962, Vygotsky

1978), cultural beliefs about learning, and commonsense observations of teaching and

tutoring. But continued experimental study of phenomena of performance and

Instructional interventions will provide new information for learning theory. Using

available and new tools for detailed description of ongoing cognitive processes, we need

to study the phenomena of learning directly, within natural settings as well as within

carefully designed Instructional settings. Such studies will shed further light on Issues

raised by the work reviewed here. Research can now be shaped to examine the interplay

between conscious mechanisms of inference and the automatic process of knowledge

compilation, to explicate the mechanisms of Internalization and the conditions that

encourage It, and to delineate how failure-driven explanation fosters understanding and

how conceptual models evolve and are integrated.

Another basic question is how Initial knowledge is acquired. Anderson's and

Clancey's programs, for example, assume that a certain amount of declarative knowledge

has already been acquired through reading and listening when their instructional

procedures are introduced. Such analysis is proceeding In research on reading and text

comprehension (Kintsch 1988a, b, Just & Carpenter 1987). In addition, general learnio

abilities and knowledge-free problem-solving skills need to be further explicated ((-.I,
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Nickerson et al 1985, Resnick 1987a, Sternberg 1986), particularly Individual differences

in how they are acquired and guide learning. To some extent, the mental models'

approach addresses the Introduction of Initial structures on which learning can proceed,

and programs on cooperative learning address the development of general skills for

problem solving and understanding. However, In the main, differences between

Individuals are left unattended in the programs that have been discussed, differences that

are Inherent in misconceptions of knowledge In a domain and In the Intuitions, theories,

principled beliefs, and aptitudes that children and adults bring to subject-matter

learning. The accommodation of the array of pertinent findings on the Initial

competence of the learner (cf. Gelman & Brown 1986) will be a significant watershed in

attempts to build powerful accounts of learning. 2

To conclude, It is apparent that the single most Important contribution to date of

the knowledge and methodology of cognitive science to Instructional psychology has been

the analysis of complex human performance. The design of instruction in the studies we

have reviewed relies more on models of competent performances In specified areas of

knowledge and skill than on models or how this performa:ice is acquired. Anderson's

work is the most rigorous In explicitly attempting to use instruction to test a the ory of

learning. But, in general, assumptions about learning, not well-specified theory, are

loosely connected to instructional principles. Indeed, the technology of cognitive task

analysis that has emerged is a crucial first step. Over 25 years ago, a major figure in

training research offered that Operhaps the most Important single contribution to the

2Other research areas that should he considered in the development or learning and intruwrn.,i ,i
include current work on the analysis of classroom teacher performance (Leinharit , ,r I,,
learning in natural settings (Lave 1977, Lave et al 1984. Schliemann &7 Acioly 1988. 1,, m-1 ,,71. n h
technology or instructional design (Gagne 1987, Relgeluth 1983); machine lear'tnii i x-,.-ii-
explanation, discovery, and learning from examples (Mlchalski et al 1983. 1986): t'Ihli.':l triill ill
Industrial and military settings (Halff et al 1986. Gott 1988, Lesgold et al 1988); n.I wh m wi

artificial Intelligence and tutoring systems (Wenger 1987).
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development of training through research has been the determination of methods for the

formulation of objectives of Instructiong (Crawford 1962, p. 326). There have since been

major Improvements In both method and content; the theory underlying task analysis

and our understanding of the nature of human competence has been greatly advanced.

These advances constitute Impressive payoff on the scientific bet, which we quoted

earlier from Newell and Simon about cognitive science's emphasis, in Its youth on

performance. 1Both learning and development must Inow] be incorporated in integral

ways In the more complete and successful theory.'

An evolution of Instructional theory and the learning theory that underlies It will

come about by Investigation of questions that emerge from work of the kind we have

described here. Progress In an area Is oftrn made on the basis of instrumentation that

facilitates scientific work, and, at the present time, a significant tool is the design of

instructional interventions that operationalize theory In the form of environments.

techniques, materials, and equipment that can be carefully studied. These Investigations

can be testing grounds for new theories of learning and instruction that will benefit both

the practice of education and the advance of science.
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